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syntheses such as the classical Fischer indole8 and the recent 
Gassman indole9 syntheses do not provide regiocontrolled entry 
into the 4-substituted indoles10 (except for the case of an 
electron-withdrawing group such as nitro in the latter ap­
proach) which are important intermediates toward ergot al­
kaloids attaches special merit to this approach. 
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polyether antibiotics.3 Monensin presents a formidable chal­
lenge to synthetic chemists; 17 asymmetric centers are present 
on the backbone of 26 carbon atoms, which means that in 
principle 131 072 stereoisomers exist for the antibiotic. In 
reporting the first total synthesis of monensin, we describe the 
synthesis of the left half of the antibiotic in this communication, 
the synthesis of the right half in the second,4 and the total 
synthesis in the third.5 

Wittig reaction of 2-(2-furyl)propionaldehyde6 with car-
bethoxyethylidenetriphenylphosphorane in refluxing benzene 
afforded the trans ester 2 '(1HNMR (CDCl3) 5 1.38 (3 H, d, 
7 = 7 Hz), 1.93 (3 H, d, J = 2 Hz), 6.70 (1 H, dq, J = 10, 2 
Hz)) in 70% yield along with a small amount of the corre­
sponding cis ester (<5% yield). Hydride reduction of 2 
(LiAlH4, Et2O, RT), followed by benzylation (C6H5CH2Br, 
KH, DMF-THF (1:4), 0 0C), gave the benzyl ether 37 (1H 
NMR (CDCl3) 5 1.31 (3 H,d, J = 1 Hz), 1.75 (3 H,d,7 = 1.5 
Hz), 3.90 (2 H, br s), 4.43 (2 H, s), 5.43 (1 H, br d, J = 8 Hz)) 
in 95% overall yield. Hydroboration of 3 (B2H6, THF, 0 0C), 
followed by alkaline hydrogen peroxide workup, yielded the 
alcohol 47 (1H NMR (CDCl3) <5 0.98 (3 H, d, J = 7 Hz), 1.29 
(3 H, d, / = 7 Hz), 4.50 (2 H, s)) along with a small amount 
of its diastereomer in 85% yield. The ratio of 4 and its diaste-
reomer was ~8:1. The structure assignment of 4 was made 
based on an example similar to this case.8 The origin of the 
remarkable stereospecificity observed might be related to the 
conformational preference of 3; based on the pioneering in­
vestigations by Wilson,9 Herschbach,10 Bothner-By,11 and 
others,12 the preferred conformation of 3 is assumed to be A. 
Therefore, hydroboration would take place preferentially from 
the sterically less hindered a face to yield 4. 

Methylation of 4 (CH3I, KH, DMF-THF (1:4), 0 0C, fol­
lowed by debenzylation (1 atm of H2, 10% Pd/C, CH3OH, 
RT), gave the alcohol 57 (1H NMR (CDCl3) 8 0.96 (3 H, d, 
J = I Hz), 1.27 (3 H, d, J = 7 Hz), 3.21 (3 H, s)) in 88% 
overall yield. Optical resolution of 5 was achieved in a three-
step sequence: (1) (-^C6H5CH(CH3)N=C=O, Et3N at 50 
0C; (2) separation of the resultant diastereomeric urethanes 

C 

Total Synthesis of Monensin. 1. Stereocontrolled 
Synthesis of the Left Half of Monensin1 

Sir: 

Monensin (I),2 produced by a strain of Streptomyces cin-
namonensis, is perhaps the best known, most historical ex­
ample from among a group of about 40 naturally occurring 
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by medium-pressure column chromatography (silica gel; 
hexane-methylene chloride-acetone (48:48:4)); (3) LiAlH4 
reduction of the separated diasteromeric urethanes to the Ie-
vorotatory (a22

D -11.07° (c 3.63, CHCl3)) and dextrorotatory 
(a22

D +11.13° (c 1.77,CHCl3)) alcohols 5, respectively. 
Pyridinium chlorochromate oxidation13 of the levorotatory 

alcohol 5 in methylene chloride at room temperature yielded 
the aldehyde 67 ('H NMR (CDCl3) 8 1.11 (3 H, d, J = 7 Hz), 
1.32(3 H,d, J = 7 Hz), 3.28 (3 H, s), 9.41 (1 H, d, J= 1.8 
Hz)) in 88% yield. Condensation of 6 in THF at -78 0C to 
— 50 0C with the phosphonate anion prepared from 
(MeO)7P(O)CH(CH3)CO2CH3 gave exclusively14 the cis 
ester V (1H NMR (CDCl3) 8 1.05 (3 H, d, J = 7 Hz), 1.28 (3 
H,d,y = 7 Hz), 1.85 (3 H, d, J= 1.2 Hz), 3.40 (3 H, s), 3.65 
(3 H, s), 5.76 (1 H, dq, J = 10, 1.2 Hz)) in 73% yield. Hydride 
reduction (LiAlH4, Et2O, RT), followed by hydroboration ((1) 
B2H6, THF, 0 0C; (2) H2O2, aqueous 10% KOH-THF, RT), 
afforded the alcohol 87 (1H NMR (CDCl3) 8 1.05 (6 H, d, J 
= 7 Hz), 1.33 (3 H, d, J = 1 Hz), 3.46 (3 H, s)) in 80% yield 
along with a small amount of its diastereomer in a ratio of 12:1. 
Based on the aforementioned reason (note the geometry of the 
olefinic bond), the structure 8 was tentatively assigned to the 
major product, which was later confirmed by comparison of 
12 with the authentic sample prepared by an alternative 
route.15 The alcohol 8 was converted to the methoxymethyi 
benzyl ether 97 (1H NMR (CDCl3) 8 1.00 (3 H. d, J = 1 Hz), 
1.06 (3 H, d, J = 7 Hz), 1.25 (3 H, d, J = 7 Hz), 3.05 (3 H, s), 
3.35 (3 H, s)) in 2 steps ((1) BrCH2OCH3, (CH3)^NC6H5, 
CH2Cl2, 0

 0C; (2) C6H5CH2Br, KH, DMF-THF (1:4), 0 0C) 
in 68% overall yield. Ozonization of 9 (O3, CH3OH, -78 0C), 
followed by diazomethane esterification, gave the ester 107 (1H 
NMR (CDCl3) 8 0.94 (3 H, d, J = 7 Hz), 1.05 (3 H, d, J = 1 
Hz), 1.13 (3 H, d, J = 1 Hz), 3.25 (3 H, s), 3.35 (3 H, s), 3.67 
(3 H, s): 6V22D +32.5° (c 1.36, CHCl3)) in 55% overall yield. 
Acid treatment of 10 (concentrated HCl-CH3OH (1:150), 
reflux) yielded the alcohol l l 7 (1H NMR (CDCl3) 8 0.98 (6 
H,d, J = 1 Hz), 1.13(3 H,d, J = 7 Hz), 3.25 (3 H, s), 3.68 
(3 H, s); a22

D +23.6° (c 1.35, CHCl3)) in 94% yield. Pyri­
dinium chlorochromate oxidation of 11 furnished the unstable 
aldehyde 127'15-17 (1H NMR (CDCl3) 8 0.93 (3 H, d, J = 1 
Hz), 1.11 (3 H, d, / = 7 Hz), 1.15 (3 H, d, J = 7 Hz), 3.26 (3 
H, s). 3.70 (3 H, s), 4.07 (1 H, dd, J = 6, 3 Hz), 4.57 (2 H, s), 
9.77 (1 H, d, J = 2 Hz); a22

D +74.2° (c 0.91, CHCl3)) in 
-95% yield. 
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Total Synthesis of Monensin. 2. Stereocontrolled 
Synthesis of the Right Half of Monensin1 

Sir: 

Here, continuing from the preceding communication on the 
synthesis of the left half of monensin, we describe the synthesis 
of the right half of the antibiotic. 

Monobenzylation of 2-allyl-l,3-propanediol2 was efficiently 
carried out in two steps ((1) C6H5 CHO, CSA, C6H6, azeo-
tropic conditions; (2) LiAlH4-AlCl3 (1:4), Et2O, RT) in 93% 
overall yield. Optical resolution of the monobenzyl ether I3 was 
achieved in a three-step sequence: (1) ( + )-l-
C10H7CH(CH3)N=C=O, Et3N, RT; (2) separation of the 
resultant diastereomeric urethanes by medium-pressure col­
umn chromatography (silica gel; hexane-methylene chlo­
ride-ether (10:10:1)), (3) LiAlH4 reduction of the separated 
diastereomeric urethanes to the levorotatory (a22o —12.1° (c 
0.68, CHCl3)) and dextrorotatory (a22

D +13.6° (c 0.92, 
CHCl3)) monobenzyl ethers 1, respectively. The S configu­
ration was assigned to the levorotatory alcohol 1 based on the 
following experiment: (-)-l was converted to (—)-2-methyl-
pentanoic acid (a22o -21.4°) in four steps ((1) MsCl, Py, 0 
0C; (2) LiAlH4, Et2O, RT; (3) H2, 10% Pd/C, CH3OH, RT; 
(4) Jones oxidation), while the rotation of (5)-2-methylpen-
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